Shape from Polarization of Thermal Emission and Reflection

Kazuma Kitazawa, Tsuyoshi Takatani | University of Tsukuba, Japan

Motivation

Goal

· Shape from Polarization (SfP) in thermal infrared spectrum

Observation

- · Most materials are opaque, uniform, emissive.
- · Clear relationship between polarization and shape.

Problems in prior work (Partridge1995, Miyazaki2002, Kechiche2017)

- · Neglected reflection and considered emission only.
- Neglected error factors of thermal polarimetry.

Model & Method

Polarization Model

- Emergent light is sum of emission and reflection components.
- · Polarization relates to the surface's orientation.

Imaging System

· Compensate errors specific to thermal polarimetry.

Recovering normal

· A neural network exhibits both robustness and physical fidelity.

Experiments

ThermoPol — the first thermal infrared SfP dataset

Various materials

Melting transparent ice

· Model-based method

Mostly functional, but weak to low DoLP, inter-reflection, concave shape Average of MAE: 13.6°

Conclusion

Takeaway

- Introduce SfP method in thermal infrared spectrum, accounting for both emission and reflection.
- · Demonstrate high accuracy and broad applicability.

Limitation

- Require thermal contrast
- Weak to certain materials (e.g., metal, rough surface)